
Scalable Far Memory: Balancing Faults and Evictions

Yueyang Pan
∗

Yash Lala
∗‡

Musa Unal Yujie Ren Seung-seob Lee
‡

Abhishek Bhattacharjee
‡

Anurag Khandelwal
‡

Sanidhya Kashyap

EPFL
‡
Yale University

Abstract

Page-based far memory systems transparently expand an

application’s memory capacity beyond a single machine

without modifying application code. However, existing

systems are tailored to scenarios with low application thread

counts, and fail to scale on today’s multi-core machines. This

makes them unsuitable for data-intensive applications that

both rely on far memory support and scale with increasing

thread count. Our analysis reveals that this poor scalability

stems from inefficient holistic coordination between page

fault-in and eviction operations. As thread count increases,

current systems encounter scalability bottlenecks in TLB

shootdowns, page accounting, and memory allocation.

This paper presents three design principles that address

these scalability challenges and enable efficient memory

offloading. These principles are always-asynchronous
decoupling to handle eviction operations as asynchronously

as possible, cross-batch pipelined execution to avoid idle

waiting periods, and scalability prioritization to avoid

synchronization overheads at high thread counts at the cost

of eviction accuracy. We implement these principles in both

the Linux kernel and a library OS. Our evaluation shows

that this approach increases throughput for batch-processing

applications by up to 4.2× and reduces 99
th
percentile latency

for a latency-critical memcached application by 94.5%.

1 Introduction

Modern data centers face a significant challenge in managing

memory. While average memory utilization across servers

remains low [22, 28, 42, 49], data-intensive applications

like large-scale analytics [66] and machine learning [6,

37] increasingly demand memory capacities that exceed

local DRAM limits [7, 21, 38, 49, 59]. To address this

mismatch between supply and demand, far memory

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SOSP ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1870-0/2025/10

https://doi.org/10.1145/3731569.3764842
*Equal contributions.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Mage
Lib

Mage
Lnx

DiLOS

Hermit

Ideal

T
h
r
o
u
g
h
p
u
t
(
%
)
w
.r
.t
a
l
l
-
l
o
c
a
l
m
e
m

% far memory

Figure 1. Throughput as a function of the percentage of

far memory used by different remote memory systems for

GapBS (page rank) at 48 threads. This figure serves as a guide

for datacenter operators, who can choose a throughput drop

compatible with their SLOs, then trade that performance for

improved memory utilization.

techniques [8, 27, 51, 52, 62, 65] leverage high-bandwidth,

low-latency networks to create expanded memory pools that

satisfy application requirements while improving overall

resource utilization. These solutions include 1) clean-slate

approaches [15, 29, 52, 56] that introduce new programming

models, which developers need to adapt to, and 2) page-

based approaches [8, 27, 51, 65] that build on existing OS

paging mechanisms. Page-based approaches are particularly

attractive because they preserve application compatibility,

allowing unmodified legacy applications to transparently

offload memory to various backends including remote

DRAM, NVMe storage, or compressed swap (zswap). This

transparency has driven widespread adoption of page-based

memory offloading in production environments at major

cloud providers [63].

However, today’s page-based far memory systems fail to

sustain the performance required by highly parallel data-

intensive applications as thread count increases, leading

to severe performance degradation when offloading local

memory. Figure 1 illustrates this issue for GapBS [12], a

representative cloud workload running with 48 threads

(experimental setup detailed in §6.1). We compare the

throughput of existing systems against an ideal baseline

that excludes software paging overhead and accounts only

for RDMA-based remote memory access costs (detailed in

§3.1). When offloading just 10% of GapBS’ memory, both

DiLOS [65] and Hermit [51] degrade GapBS’ throughput

by 50% and 75% respectively, far exceeding the ideal 10%

degradation. This performance gap, driven by software

paging overhead, only widens as we increase the amount

1

https://doi.org/10.1145/3731569.3764842

of offloaded memory. As a result, the key benefits of

far memory—accessing large remote pools to improve

capacity and cost efficiency—remain largely untapped

because existing systems hit severe performance bottlenecks

way before approaching ideal offloading limits.

This scalability problem stems from a fundamental

architectural mismatch: existing far memory systems apply

traditional virtual memory mechanisms—originally designed

for millisecond-latency disk storage—to modern datacenter

networks capable of microsecond-level page transfers. This

mismatch creates severe performance bottlenecks, especially

in high-thread-count environments common in modern

data-intensive applications. Our analysis reveals three

primary causes of performance collapse: First, maintaining

translation lookaside buffer (TLB) coherence through

cross-core interrupts scales poorly, becoming prohibitively

expensive as the number of threads increases. Second, shared

data structures for page tracking (such as system-wide LRU

lists) create high contention between application threads

faulting-in pages and background threads evicting them.

Finally, both local and remote memory allocators exhibit

high tail latencies under contention, hindering efficient

page frame circulation between free and used states. As

shown in Figure 5, these bottlenecks collectively throttle both

fault-in and eviction throughput, with eviction performance

suffering disproportionately.

This paper presents design principles for building scalable

far memory systems that address the key challenges

of operating at large scale. Our approach relies on the

core principle of always-asynchronous decoupling of

the fault-in and eviction paths, which we achieve by

offloading eviction logic to a small pool of dedicated

threads. This separation enables path-specific optimizations:

it minimizes latency on the application-critical fault-in

path while maximizing throughput on the eviction path,

an approach that moves expensive operations like TLB

coherence off the critical path. To reduce contention and

enforce asynchrony, we strictly limit the number of active

evictor threads, eliminating the “synchronous fallback”

mechanisms found in prior works. Eviction throughput is

further enhanced via cross-batch pipelining, a technique

that overlaps operations across batches to utilize otherwise

idle periods. For multi-core scalability, we prioritize

contention avoidance, employing techniques like per-CPU

data structure sharding. This approach trades precise, fine-

grained information on page “hotness” for significantly

improved performance under high load. The resulting

high-performance eviction path ensures a constant supply

of free pages, enabling the fault-in path to deliver low-

latency remote memory accesses by avoiding direct eviction

operations.

We apply these principles to design two far-memory

variants: Linux-based (Mage
Lnx

) and library OS-based

(Mage
Lib
). Both systems open up a completely new set

Promotio
n

(EP) Eviction path

...

Read

PRA

Alloc free
pages

PRA

Demotio
n

TLB flush Write

*PRA: Page reference accounting

Get victim pages

Remote mem alloc

(FP) Fault in path

Put pages back

Figure 2.Workflow abstraction for page-based far memory

systems. Generally, they contain fault-in and eviction paths.

The fault-in path handles the application page faults and

triggers the eviction path under memory pressure.

of opportunities for far memory systems, as they permit

memory offloading opportunities close to the ideal scenario

(Figure 1). We evaluate Mage on a set of real-world

applications, including both latency-critical and batch-

processing ones. Mage outperforms existing far memory

systems by 1.2–4.2× in terms of throughput and reduces tail

latency by 50.2%–94.5% for latency-sensitive applications.

This paper makes the following contributions:

• Scalability analysis. We emphasize the importance of

throughput scalability for far memory systems, identifying

and analyzing the associated overheads that directly

impact application performance and offloading capability.

• Design principles. We propose three principles to

unlock the full potential of scalable far memory systems:

always-asynchronous decoupling, cross-batch pipelining,
and prioritizing contention avoidance.

• Scalable far memory system. We introduce two new

page-based remote memory systems that use the above

principles. These systems outperform existing ones by

1.2–4.2× for memory-intensive applications.

2 Evolution of Page-Based Far Memory

Remote memory transforms DRAM into elastic memory

by enabling applications to utilize idle memory on remote

machines through a fast network fabric. This makes remote

memory a viable solution to cater to the increasing demands

of data-intensive applications [12, 19, 34] that are already

hitting the memory wall problem [28, 49].

Several software solutions [51, 52, 65] demonstrate this

approach’s feasibility in modern datacenters. The most

practical and easily adoptable solution is the kernel page-

based approach [8, 27, 51, 65], which builds upon the old

idea of paging to secondary storage to expand memory.

2.1 Remote Page Life Cycle

Page-based systems use remote paging to manage memory

placement. They aim to keep frequently accessed (“hot”)

pages in local memory while migrating less-used (“cold”)

2

pages to remote memory. Figure 2 illustrates the typical life

cycle of remote paging in kernel-based far memory systems.

This process involves two primary, coordinated paths:

Fault-in path (FP). This path handles page faults when

an application accesses a page absent from local memory.

It works as follows: upon a page fault, the OS requests a

free page from the local memory allocator (𝐹𝑃1). If no page

is available, the OS triggers the eviction path (EP). Once

a free page is available, the OS fetches the page from the

remote end using RDMA read (𝐹𝑃2), and updates the page

replacement metadata to reflect the page’s recent use (𝐹𝑃3).

Eviction path (EP). This path runs when local memory

pressure is high. It evicts pages to free up space for the

application. It works as follows: The OS first identifies

victim pages for eviction based on replacement criteria using

replacement metadata information [32, 47] (𝐸𝑃1). The page

accounting mechanism uses an LRU data structure to keep

track of hot and cold pages. After selecting the victim pages,

the OS updates the page table entries and invalidates the TLB

entries for the victim pages via TLB shootdowns (𝐸𝑃2). The

OS then allocates pages on the remote end (𝐸𝑃3) and copies

the page content from local victim pages to remote pages

using RDMA write (𝐸𝑃4). Subsequently, the OS reclaims the

victim pages back into the local memory allocator pool.

2.2 Focus of Today’s Far Memory Systems

Current systems primarily focus on optimizing the latency

of individual page operations at low thread counts. Several

works optimize the eviction path by enhancing the Linux

swap subsystem with an RDMA-based backend for efficient

remote memory access [8, 27]. Hermit [51] reduces

fault-in latency through feedback-directed asynchrony,

employing multiple eviction threads to perform page

eviction concurrently without blocking application threads.

Meanwhile, DiLOS [65] takes a different approach by

implementing a specialized library OS (LibOS) with a custom

paging subsystem specifically designed to minimize page

fault handling overhead. For the fault-in path, prior works

explore various prefetching policies [44, 65] to proactively

load pages before they are accessed, in order to reduce the

frequency of page faults. However, a critical limitation with

current systems is their failure to address the scalability

bottlenecks that emerge in both fault-in and eviction paths

when running on many-core systems.

3 It’s Not Paging’s Fault: Understanding

Remote Paging Bottlenecks at Scale

Despite advances in page-based far memory systems, scaling

data-intensive applications remains challenging. While

modern OSes efficiently handle thousands of page faults

per second per core for local memory access, remote paging

mechanisms (§2.1) introduce severe scalability bottlenecks as

thread count increases. This limitation significantly restricts

memory offloading benefits for modern data-intensive

applications requiring expanded capacity. We analyze two

recent far memory systems—Hermit and DiLOS—focusing

on their fault-in and eviction path performance at higher

thread count, increasingly common in such applications.

3.1 Scaling Barriers to Memory Offloading

Modern applications exhibit diverse memory access

patterns. Current remote paging techniques effectively

utilize far memory for applications with few threads, but

performance severely degrades as thread count increases.

This creates a critical paradox—highly parallel applications

that need expanded memory capacity cannot leverage

remote resources efficiently. The resulting performance

collapse leaves significant memory offloading opportunities

unrealized at scale, undermining their practical value.

We first establish a baseline for calculating far-memory

throughput demand, followed by three representative cases,

then present three representative cases demonstrating this

issue with DiLOS and Hermit. All systems use the same

experimental testbed detailed in §6.1.

Baseline: The “ideal” far-memory system. We assess

an application’s far-memory demand by modeling its

throughput on an ideal system. This system incurs only data

movement costs, with zero software overhead in the fault-

in and eviction paths. This analytical model represents the

theoretical upper bound on far-memory throughput. We use

best-case memory access latency (𝐿 = 3.9𝜇s RDMA latency

detailed in §6.1). Any remaining slowdown indicates poor

system scalability due to paging overheads.

We first define the baseline throughput when all memory

resides locally. If its runtime is 𝑇0 seconds, the local

throughput (Thp
local

) is
3600

𝑇0
jobs/hour. When a portion of

memory (𝑥%) is remote, the performance is affected due to

access latency. Each remote page on a CPU, 𝑐 , introduces

a delay, 𝐿. If core 𝑐 experiences 𝐹𝑐,𝑥 page faults during

execution, its runtime increases to 𝑇0 + 𝐿 × 𝐹𝑐,𝑥 . Since the

application’s completion time is bounded by its slowest

thread, which incurs the most page faults, the ideal far-

memory throughput is:

Thp
ideal

(𝑥) =min

𝑐∈𝐶
(3600

𝑇0 + 𝐿 × 𝐹𝑐,𝑥
) jobs/hour

Then the throughput drop attributable to far-memory is:

ΔThp(𝑥) =
(
1 −

Thp
ideal

(𝑥)
Thp

local

)
× 100%

=max

𝑐∈𝐶

𝐿 × 𝐹𝑐,𝑥

𝑇0 + 𝐿 × 𝐹𝑐,𝑥
× 100%

We now use this “ideal” curve as a baseline to demonstrate

how today’s systems exhibit performance collapse for three

classes of applications.

Applications with random access patterns. The inherent

characteristics of some applications pose a significant

challenge for remote memory systems. For instance, GapBS

3

0

100

200

300

400

500

600

9080706050403020100

0

20

40

60

80

100

120

140

160

180

200

9080706050403020100

J
o
b
s
/
h
o
u
r

% far memory

(a) GapBS

48 threads

Ideal

% far memory

(b) XSBench

Figure 3. Throughput comparison of GapBS page rank and

XSBench workloads using 48 threads between an “ideal” far-

memory system and Hermit.

0

1

2

3

4

5

6

7

9080706050403020100

1

2

3

4

5

6

7

9080706050403020100

T
h
r
o
u
g
h
p
u
t
(
M

o
p
s
/
s
)

% far memory

(a) Hermit

No prefetch

Readahead

Ideal

% far memory

(b) DiLOS

Figure 4. Throughput of sequential-scan micro-benchmark

using 48 threads and varying memory offloading for Hermit

and DiLOS compared to their respective “ideal” baselines.

page rank (graph random walks) and XSBench (simulation

sampling) perform random memory access over large

working sets. Figure 3 compares their throughput using

48 threads with varying memory offloading ratios on

Hermit and our “ideal” system. The “ideal” curve shows

that application throughput should degrade moderately

with increasing memory offloading. In contrast, Hermit

cannot sustain the remote memory pressure (1.5 million

pages/second, i.e., 48 Gbps), causing severe performance

degradation of 73% and 69% for GapBS and XSBench,

respectively, at 10% memory offloading. While this effect

is less pronounced at lower thread count, performance

drops still remain significant: At 4 threads for 10%

offloading, GapBS and XSBench suffer 35% and 19%

degradation, respectively, due to reducedmemory bandwidth

requirements that Hermit can better handle. These overheads

stem from inefficiencies in both the fault-in and eviction

paths, which we analyze in detail in §3.2.

Applications with regular access patterns. Even

applications with regular, prefetchable patterns face severe

throughput limitations at scale. We use a microbenchmark

that sequentially scans through a memory buffer, which

represents the ideal case for prefetching, as it enables simple

read-ahead heuristics. Figure 4 presents the throughput

for 48 threads. Although prefetching reduces major fault

counts by 26.9% and 43.9% at 10% memory offloading

for Hermit and DiLOS, respectively, throughput remains

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

Fault-in only

Fault with eviction

T
h
r
o
u
g
h
p
u
t
(
m
o
p
s
)

threads

(a) Hermit

threads

(b) DiLOS

Figure 5. Throughput of existing systems for fault-in only

vs. fault-in with eviction. The ideal limit is 5.83 M ops/s.

virtually unchanged compared to the non-prefetch case. This

occurs because the fault-in path becomes bottlenecked by

the shortage of free local pages. For Hermit, performance

degrades even further due to synchronous eviction triggered

by its eager fault-in approach.

Applications with varying working sets. Application

phase changes trigger working set shifts that cause severe,

temporary performance degradation, even when local

memory capacity is sufficient for either phase. These

transitions simultaneously evict pages from the old working

set while faulting in pages from the new working set.

We observe this in data processing workloads that follow

bulk-synchronous parallel (BSP) programming models like

MapReduce [34]. While throughput remains stable within

each phase, transition periods lead to drastic performance

drops (∼99%) that persist until the newworking set stabilizes.

This occurs due to inefficient overlap of the fault-in and

eviction paths, especially at high thread count.

Takeaway. Regardlessly of application behavior, current far

memory systems sharply degrade application performance

with increasing thread count. While this may appear to be

application-level thrashing due to insufficient local memory,

the next section reveals that the underlying remote paging

system is the actual bottleneck. The fault-in and eviction

paths cannot handle the throughput demands of highly

parallel workloads, preventing the effective use of remote

memory when applications need it most. As we demonstrate

in §6.2, applications can achieve high performance at scale

once these system-level overheads are resolved.

3.2 Remote Paging Bottlenecks at Scale

We now analyze the scalability bottlenecks of existing far

memory systems. We use a sequential read microbenchmark,

in which each thread performs sequential reads at page

granularity over sufficient network bandwidth (200 Gbps).

We compare throughput under two scenarios: (1) fault-in

only, and (2) fault-in with active eviction. For the fault-in

only case, we use 100% local memory and pre-evict pages

with madvise_pageout to force page faults on each access.

For the combined case, we enable eviction with 50% memory

offload and use four asynchronous eviction threads. Figure 5

4

Hermit 48T

Hermit 24T

DiLOS 48T

DiLOS 24T

0 10 20 30 40 50 60

TLB shootdown

Memory circulation

LRU update

RDMA

Others

Time (𝜇s)

Figure 6. Latency breakdown of DiLOS and Hermit’s page

fault handler for the sequential read benchmark at 24 and 48

threads. At low thread count, the RDMA read cost dominates.

The “others” category includes context switch costs, fault-

dispatching, page-table walks, and PTE updates.

shows that both Hermit and DiLOS fail to scale linearly,

and saturate at around 24 to 28 threads. Hermit exhibits

severe limitations: fault-in-only throughput reaches just 20%

of ideal performance, drops to 14% when eviction is enabled,

and degrades further to 10% at higher thread count. DiLOS

performs better but still faces significant constraints: fault-

in-only throughput reaches 56% of ideal performance (at

24+ threads), but drops to 30% when eviction is enabled. The

eviction path is the primary performance bottleneck for both

systems.

We now analyze the underlying causes of both paths.

Fault-in path. We analyzed system performance and found

several scalability bottlenecks at high thread counts. At 48

threads, Hermit’s scalability is limited by contention on

shared metadata structures within the Linux kernel. Notable

bottlenecks include locks associated with virtual memory

areas (VMAs) [41] and the swap allocator. In particular, the

swap allocator’s global spinlock severely contends under

fault-intensive conditions [65].

DiLOS mitigates many of these Linux-specific

overheads through heavy kernel specialization. It embeds

synchronization within page table entries and leverages a

unikernel architecture (one application with one address

space), which avoids the VMA lock contention inherent in

the Linux kernel. DiLOS also replaces the standard swap

system with a specialized direct local-to-remote mapping

mechanism. Despite these optimizations, DiLOS exhibits its

own throughput bottleneck due to contention on a global

sleepable mutex protecting its physical page allocator.

Eviction path. Figure 6 presents the average remote paging

costs and path-specific breakdowns at 24 and 48 threads,

respectively, with active eviction. As thread count doubles

from 24 to 48, both Hermit and DiLOS experience severe

software bottlenecks. These stem mainly from synchronous

eviction, which gets triggered when asynchronous eviction

threads cannot maintain sufficient page eviction throughput.

This issue gets further amplified by cross-socket effects.

Hermit’s multi-threaded asynchronous eviction design

0

20

40

60

80

100

120

0 8 16 24 32 40 48 56

DiLOS TLB

DiLOS IPI

Hermit TLB

Hermit IPI

A
v
e
r
a
g
e
l
a
t
e
n
c
y
(
𝜇
s
)

threads

Figure 7. The average latency of TLB shootdowns and IPI

delivery in the sequential read micro benchmark.

becomes ineffective at higher thread count. Due to the

spike in memory management operations in the eviction

path, increasing the number of asynchronous threads does

not improve eviction throughput under the swap-intensive

case. This throughput inefficiency then triggers synchronous

eviction, further exacerbating the scalability issues. For

instance, TLB shootdown is the dominant factor in overall

performance degradation. With two application threads (not

shown in the figure), page eviction remains asynchronous,

i.e., TLB flush does not show up in the fault-in path. However,

as the number of threads increases to 48, poor scaling for

synchronous evictions causes TLB flush times to increases to

27 𝜇s. One point to note is that Hermit’s throughput is also

limited by the complex memory management functionality

of Linux, which suffers from severe contention in reverse

mapping, page table manipulation, cgroup accounting, and

swap cache maintenance, leading to a collapse in throughput.

DiLOS, on the other hand, employs a specialized far-

memory unikernel that merges user and kernel address

spaces for single applications. This design eliminates cross-

application components like rmap and swap cache, replacing

the swap allocator with direct remote memory mapping. As

a result, it achieves better throughput compared to Hermit

in both fault-in only and eviction scenarios (Figure 5).

Vanilla DiLOS relies on a single eviction thread with an

inefficient IPI-based wait-wake mechanism. We extend it

with multiple eviction threads and synchronous eviction

while preserving the eviction path functionality, yielding

higher throughput. However, as the number of threads

increases, DiLOS encounters scalability bottlenecks similar

toHermit: TLB shootdowns increase from zero at two threads

to 6 𝜇s at 48 threads, while local memory allocation and page

accounting costs rise by 2.9× and 3.5×, respectively.

3.3 Challenges of Scaling Remote Paging

We identified that existing systems are bottlenecked by faults

and evictions at scale. We now conduct an in-depth analysis

of the throughput bottlenecks for three page operations:

metadata coherence, page accounting, and page circulation.

3.3.1 Page metadata coherence cost (𝐸𝑃2). During page

eviction, maintaining coherence is the most expensive

5

operation. Most architectures, including x86, require explicit

OS support for translation lookaside buffer (TLB) coherence.

The current approach to modifying the TLB is either

invalidating a single entry using the INVLPG instruction or

flushing all local TLB entries by writing to the cr3 register.

These instructions only control the per-core TLB. The OS

invalidates TLBs on remote cores (on the samemachine) with

an IPI-basedmechanism, inwhich theOS delivers IPIs to each

remote core one by one via the Advanced Programmable

Interrupt Controller (APIC) [31].

Although TLB maintenance is a well-known problem in

the context of page free (munmap) and page migration in

modern OSes [9, 10, 14, 36], it becomes even more critical for

far memory systems in the eviction path. To illustrate this

point, we measure TLB shootdown costs in our sequential

read microbenchmark with increasing thread count. Figure 7

presents the results for both Hermit and DiLOS; both systems

suffer from significant overheads fromTLB shootdowns. This

happens for two reasons. First, IPI delivery latencies increase

substantially across NUMA sockets [36], which causes the

latency inflection point at 28 application threads. Second,

when eviction threads cannot provide sufficient bandwidth,

fault-in threads perform synchronous eviction on the critical

path. Both fault-in and eviction threads must send TLB flush

requests to invalidate victim pages, which requires issuing

IPIs to all application cores. This IPI “storm” results in IPI

queuing, increasing per-IPI latency by 33×when scaling from

1 to 48 application threads for Hermit. Additionally, DiLOS

exhibits higher absolute TLB shootdown costs because it

runs on virtualized hardware [35], where each IPI triggers

a VMexit that adds approximately 1,200 cycles overhead.

Although hypervisor optimizations attempt to reduce VMexit

overhead [1], they still suffer from existing IPI costs.

Challenge 1: TLB coherence maintenance becomes a major
bottleneck with increasing thread count. The challenge lies in
limiting the number of IPI senders and hiding, reducing, or
amortizing its high latency.

3.3.2 Page accounting (𝐹𝑃3, 𝐸𝑃1). Another dominant

factor is the data structure for maintaining page replacement

information for remote paging. The intuition behind victim

page selection algorithms is to keep hot data local and reduce

the page fault rate. In particular, the OS keeps track of pages

to eventually decide on the eviction of some pages based

on the goal of minimizing IO operations while maximizing

hit rates. Hermit and DiLOS, derived from Linux and OSv

respectively, use a system-wide single LRU list to account for

the access recency of each occupied page.

This page accounting data structure is the most update-

intensive one, as both paths (𝐹𝑃3 and 𝐸𝑃1, §2.1) update

it frequently. Operations on this data structure create a

significant throughput bottleneck in the eviction path.

Both Hermit and DiLOS suffer from severe contention

that increases with thread count, as shown in Figure 6. In

Hermit, the multi-threaded asynchronous eviction threads

(𝐸𝑃1) contend on the LRU data structure with application

threads performing fault-in operations (𝐹𝑃1), which offsets

the desired benefits of asynchronous eviction. DiLOS suffers

from the same scalability issue. As a result, contention on

the LRU list increases by 9.6–11.4× with increasing thread

count.

Challenge 2: Current page eviction algorithms only focus
on replacement effectiveness, overlooking the contention. The
challenge lies in designing a page-eviction algorithm in the OS
that ensures scalability with similar replacement effectiveness.

3.3.3 Cost of page circulation (𝐹𝑃1, 𝐸𝑃3). During both

paths (FP and EP), the OS allocates and deallocates pages,

which move from the unused pool to the used pool. In

particular, the local memory allocator (𝐹𝑃1) grabs pages from

the unused local memory pool, while the remote memory

allocator (𝐸𝑃3) allocates a page or metadata on the remote

end to evict a victim page. Most modern OSes [13, 35] use the

buddy allocation algorithm, which partitions memory into

zones and allocates contiguous blocks of sizes that closely

match the requested allocation size. Current allocator designs

add a fast-path layer in the form of per-CPU page caches to

reduce contention on the centralized buddy allocator [25].

Similarly, remote page allocation uses the swap subsystem

to track remote pages [25].

We investigate the performance of both local and remote

allocations by analyzing the contention overhead. Figure 6

shows that both systems suffer from high contention while

circulating pages at high thread count for different reasons.

The high contention in Hermit occurs due to a global

spinlock on the Linux swap subsystem (𝐸𝑃3). DiLOS, on the

other hand, completely gets rid of the swap subsystem and

eliminates the bottleneck in the remote memory allocator

(𝐸𝑃3) by storing the remote page info in the local page table

entry. However, in the swap-intensive workloads with high

thread count, DiLOS severely contends on the local memory

allocator due to a global lock.

Challenge 3: Current memory allocators incur high tail
latency with increasing thread count. The challenge lies in how
to avoid contending the global allocators in both FP and EP
by retrofitting them for far memory systems.

3.4 Summary

The current landscape of far memory systems shows

throughput bottlenecks in both the fault-in and eviction

paths, with the latter being more severe. The biggest

deterrent to a scalable throughput is the contention on

maintaining core OS-level remote paging mechanisms,

such as TLB shootdowns, page accounting, and memory

allocation. While prior works advanced low-thread-count

latency reduction, they overlook scalability under high

thread count, where the latency of individual FP and EP

6

operations can increase super-linearly. As a result, the non-

scalable aspect of existing systems directly affects application

performance as well as the memory offloading capability.

4 Design: Balancing FP and EP

Handling the scalability challenges of far memory systems

requires a holistic approach that balances both the fault-in

and eviction paths. We propose the following core design

principles to address the core paging scalability challenges:

P1: Always-asynchronous decoupling To reduce

the latency of heavy operations, such as maintaining

TLB coherence, we offload EP-specific tasks from the

application’s critical path to dedicated background threads.

Such decoupling enables specialized optimization objectives

for each path based on its role and observed system

bottlenecks: FP is optimized for minimal latency impact on
application execution, while EP is optimized aggressively

for high throughput. Unlike prior works [51, 65], FP threads

do not perform synchronous eviction during a shortage of

free pages, leaving this responsibility to EP threads. This

minimizes contention overheads, and avoids the TLB IPI

queuing delays associated with synchronous eviction.

P2: Cross-batch pipelined execution Since Principle P1

dedicates CPUs to the EP, we optimize the EP for maximum

throughput. This minimizes CPU cycles per evicted page to

avoid blocking the FP. We pipeline execution using large

eviction batches to amortize TLB coherence costs across

the dedicated EP threads. We leverage asynchrony across

batches to maximize remote memory throughput without

degrading application execution.

P3: Prioritizing scalability via coordination avoidance.

Lock contention on shared data structures is a fundamental

barrier to scaling across multiple cores. Thus, our design

favors low-contention techniques over potentially more

accurate but less scalable alternatives. We rely on sharding

data structures across CPUs and choose algorithms that

reduce synchronization needs, even if it means occasionally

sacrificing some precision in our eviction policies. To

mitigate these trade-offs where possible, we dynamically

adapt mechanisms to maintain a balance between low

contention and accuracy.

Based on these principles, we design Mage to achieve

scalable remote paging. We now detail how we apply these

principles to redesign the eviction path (§4.1), and minimize

contention on global data structures that impact both fault-in

and eviction paths (§4.2).

4.1 Always-Asynchronous Decoupling and

Cross-Batch Pipelined Eviction

Eviction plays a critical role in remote paging. We

first discuss existing approaches to eviction and their

shortcomings. Then, we present our eviction design using

the aforementioned principles (P1 and P2).

Traditional eviction path and its problems. Traditional

remote paging systems suffer from sequential eviction paths

and colocated scheduling models. By scheduling eviction

threads on the same CPU cores as application threads, these

systems create mutual contention between them, leading to

two main interference patterns: First, application threads

can delay eviction threads, reducing the overall eviction rate.

This can trigger synchronous eviction, forcing application

threads to stall during page faults until memory is freed. As

a result, application performance gets completely throttled

(§3.3). Second, eviction threads can block application threads,

causing unpredictable slowdowns as they process large

batches of pages destined for far memory.

These performance issues are fundamentally rooted in the

rigid, sequential nature of batch page eviction (Figure 8). The

process involves a series of dependent steps—extracting a

page batch from the global LRU list, checking accessed bits,

allocating swap space, unmapping pages, and managing the

RDMA write—that must complete for one batch before the

next can begin. This monolithic design introduces significant

software latencies on the critical path, with key bottlenecks

including contention on shared data structures and expensive

TLB coherence synchronization.

One might consider using larger batches to amortize these

overheads. However, larger batches are counterproductive:

they increase per-page processing overhead and intensify

lock contention due to longer page scanning times and

sequential dependencies (Figure 18). Moreover, during

synchronous eviction, these large batches introduce

significant latency for the faulting application. Similarly,

adding more eviction threads to match fault-in throughput

fails to solve the underlying problem. Additional threads

only exacerbate the contention because the latency of these

operations increases with more eviction threads (§3.3).

Solution: Asynchronous eviction with pipelined

execution. In Mage, we resolve application-eviction

interference through always-asynchronous decoupling (P1).
First, Mage dedicates CPU cores to evictor threads, avoiding

context switches and enabling path-specific optimizations.

Moreover, Mage disallows synchronous eviction in the fault-

in path; instead, it relies entirely on the eviction threads to

alwaysmaintain a steady supply of free pages. This dedicated

design allows us to optimize the eviction path for maximum

throughput while delegating latency-sensitive optimizations

to the FP path. To ensure the FP path always has free

pages available, the EP path must keep pace with demand

through sufficient dedicated evictor threads. However, too

many evictor threads cause high contention and IPI queuing

(discussed in §3.3.1). Our empirical analysis shows that four

evictor threads provide a sweet spot: they allow Mage to

maintain a steady supply of free pages for the FP, without

suffering from excessive synchronization overheads, even

enabling Mage
Lib

to saturate the 200 Gbps NIC.

7

Epoch 1 Epoch 8 Epoch 9 Epoch 10Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 11 Epoch 12

Figure 8. Cross-Batch Pipelined Eviction Workflow. TLB Send corresponds to TLB flush using IPI.

Second, Mage tackles the challenge of ensuring these

dedicated threads execute fast enough to meet fault-in

throughput demands. The key insight is that while operations
within a batch have dependencies, the long waiting periods to
complete each operation enables parallelization across multiple
batches. For instance, both RDMA writes and TLB flushes

comprise two phases: issuing the request and waiting for

completion. Since waiting time significantly exceeds sending

time, these idle periods can be used to execute pipeline stages

for other batches.

Following this insight, we implement pipelined execution
(P2) through a multi-staged out-of-order eviction path. Our

design uses two per-CPU staging buffers: 1) The TLB staging
buffer (TSB) holds unmapped pages with potentially cached

TLB entries. 2) The RDMA staging buffer (RSB) contains pages
awaiting remote memory writes. Each batch gets executed in

the following order: 1 It first slices a batch of pages from the

LRU list, allocates swap entries, and unmaps the pages. 2

Next, it initiates TLB flush requests via IPIs for the current

batch and moves these pages to the TSB. 3 It waits for

TLB flush completion. 4 Once it receives ACKs for the TLB

flushes for the entries in the TSB, it moves dirty pages from

the TSB to a local buffer. 5 It then initiates RDMA write

requests for dirty pages in the local buffer and moves them

to the RSB. 6 Then, it waits for RDMA write completion for

the batch in the RSB. 7 Once it receives the RDMA ACKs

for the requests in the RSB, it reclaims clean pages from the

RSB.

Instead of waiting during steps 3 and 6 , our pipelined

design works on subsequent batches (see Figure 8),

maximizing throughput. The eviction thread batches across

three conceptual stages: It begins by scanning the LRU

list and unmapping pages for a new batch. It checks for

completed TLB flushes for a second batch, then initiates

a remote TLB flush for the first batch. It waits for a third

batch to complete RDMA, then initiates RDMAwrites for the

second batch. Finally, it reclaims the page frames from the

third batch, and starts scanning the LRU list again. Pipelining

allows RDMA wait latency to hide the overhead of the other

pipeline stages. As a result, eviction threads achieve high

throughput with lower thread count. This implementation

directly supports our design principles: P1 by completely

separating the eviction path from the fault path, and P2 by

optimizing the eviction process specifically for maximum

throughput rather than minimizing per-operation latency.

4.2 CPU-efficient Remote Paging Paths

Current paging designs rely on traditional virtual memory

and paging structures to transparently access remote

memory. In particular, every application thread must be

able to view the latest changes to the page table (triggered

every time a page is fetched from far memory to local

DRAM and vice versa) to ensure the correctness of its page

accesses. Additionally, the system maintains the same data

structures, such as page metadata coherence (TLB), page

accounting (LRU), and the memory allocator across cores for

the latest information. Thus, concurrent accesses to these

global data structures and components lead to throttling of

remote paging paths (§3.3). To resolve this, Mage prioritizes

coordination avoidance (P3) over eviction accuracy. Next, we

discuss practical optimizations to reduce contention on these

global data structures.

4.2.1 Dedicated Batched TLB Invalidation. To

minimize TLB coherence costs, Mage batches multiple

page invalidations into a single TLB shootdown request,

amortizing the overhead of expensive IPI-based operations.

Unlike Hermit, which uses up to 32 dynamic eviction threads

that create contention despite batching, Mage adopts a more

constrained approach. Mage employs a small, fixed number

of eviction threads that issue large batches of shootdowns

to reduce shootdown frequency and synchronization waits,

thereby lowering contention on system interrupt controllers

like the APIC. Specifically, Mage uses a maximum of four

dedicated eviction threads, each responsible for aggregating

invalidation requests into batches of up to 256 pages per

shootdown event. We found that 4 threads are sufficient to

saturate the 200 Gbps NIC in our experiments. Combined

with our other EP optimizations, this approach enables

Mage’s EP to maintain a steady supply of free pages for the

FP, ensuring low FP latency by avoiding page evictions on

its critical path.

4.2.2 Partitioned Page Accounting. Effective remote

paging requires page accounting to track access history

and select appropriate eviction candidates under memory

pressure. LRU is the most common page replacement

8

algorithm, and modern OSes implement LRU using multi-

level feedback queues [2]. However, current page accounting

mechanisms suffer from contention at the centralized final

level during eviction, leading to throughput collapse. While

newer algorithms like S3FIFO [64] reduce LRU contention,

they require fine-grained access frequency tracking that is

incompatible with existing OS page table mechanisms, which

rely on coarse-grained access bits to detect page hotness. To

address this limitation, Mage adopts a partitioned design,

where each dedicated eviction thread maintains its own

independent LRU list. This approach deliberately sacrifices

global eviction accuracy in favor of substantially reduced

lock contention and improved scalability. We now detail how

Mage handles pages with several LRU lists.

Adding pages to the LRU lists Pages enter the partitioned

inactive LRU lists in two situations: when faulted-in from

remote memory, or when identified as hot during eviction

scanning and subsequently reactivated. In both cases, Mage

distributes incoming pages by selecting a target list based

on the hash of the current CPU’s ID modulo the number

of LRU lists. This hashing strategy aims to distribute pages

evenly across partitions, enabling balanced parallel page

selection by the eviction threads later and helping sustain

high eviction throughput under load.

Removing pages from LRU lists During eviction, dedicated

eviction threads concurrently select candidate pages by

scanning their respective partitioned LRU lists. To balance

the load, each thread begins scanning at a different list index

and proceeds through the lists in a round-robin fashion for

subsequent eviction cycles. If a thread finds its current list

empty, it moves to the next list in its round-robin sequence.

4.2.3 Boosting Page Circulation. In the execution of

fault-in path and eviction path, a physical page circulates

between local and remote allocators. Under memory

pressure, the underlying paging mechanism stresses the

local and remote memory (page) allocation. Here, we adopt

the sharding and caching principle to reduce the possible

contention of page allocation on both the local and remote

sides. In particular, Mage maintains per-CPU caches of free

pages, which are asynchronously replenished with pages

from the global free-page list. We detail the design of Mage’s

local physical page allocator in §5.2.

Remote swap allocator. The swap allocator design

leverages the observation that the remote memory node is

usually large and cheap. Therefore, we use VMA-level direct

mapping to eliminate any form of swap entry allocation. For

example, the local page at 𝑙𝑜𝑐𝑎𝑙_𝑎𝑑𝑑𝑟 + 512KB is mapped to

the remote virtual address 𝑟𝑒𝑚𝑜𝑡𝑒_𝑎𝑑𝑑𝑟 + 512KB directly.

5 Implementation

We build two variants of Mage, one for Linux and one for

OSv, which is a library OS.

5.1 Mage
Lnx

: A Linux-based Version of Mage

We realize our design principles on the Linux kernel

4.15.0 [4] to demonstrate that remote paging can be made

scalable even on commodity OSes. Mage
Lnx

is written in

17k lines of code (LoC). We adopt several of Hermit’s

optimizations to bypass overheads in Linux’s rmap layer. We

further reduce contention by reimplementing throughput-

specialized versions of Linux’s memory management data

paths. For example, we skip the Linux swap layer entirely,

optimize coarse-grained address space locks into interval-

tree-based “shards”, and bypass the Linux memory allocator

when managing our free pages. We use low-contention

FIFO queues for tracking in-use pages instead of Linux’s

multi-generation LRU lists [2], trading eviction accuracy for

reduced list contention.

5.2 Mage
Lib

: An LibOS Version of Mage

We build Mage
Lib

based on the OSv unikernel [35] (v0.55).

The core part is written in 4,234 LoC. Mage
Lib

memory

node consists of 320 LoC. We adopted several components

from DiLOS to deliver high performance, including the

unified page table, the linker layer and the low-latency

RDMA driver. The unified page table replaces the kernel

swap cache for deduplication on concurrent fault-in requests.

We further optimize the OSv memory allocator to reduce

contention on the global buddy allocator. We introduce

a three-level hierarchy: per-core free-page caches for

immediate access, a shared concurrent queue for batch

operations, and the traditional global buddy allocator

as a fallback. This hierarchical approach enables fast

allocation/deallocation paths, with application threads and

eviction threads following different strategies to optimize

for either locality or throughput, significantly reducing

contention even under swap-intensive workloads.

Memory node. Mage
Lib

uses one-sided RDMA for

communication. A daemon on the memory node manages

the setup requests and registers the memory region to its

RDMA NIC. The memory region uses HugeTLB to reduce

the cost of page table walks on the memory node side.

6 Evaluation

We evaluate Mage to answer the following questions:

Q1. What is the impact of our design on offloading

throughput-bound applications? (§6.2)

Q2. What is Mage’s impact on offloading latency-critical

applications? (§6.3)

Q3. What is the maximum throughput that Mage can

achieve, and can it shift the bottleneck from software

to hardware? (§6.4)

Q4. Which components contribute to performance

improvements, and does Mage maintain efficiency for

low throughput requirements? (s§6.5)

9

Category Application Dataset Size Characteristic

Throughput-bound

GapBS [12] Kronecker [39] 1.5B Edges, 41.7M Vertices Random graph

XSBench [58] Nuclide and unionized grid 355 Nuclides and 10.6m gridpoints Random grid

Sequential Scan Synthetic 20GB Prefetchable scan

Gups [50] Synthetic 32GB Phase changing random

Metis [34] Wikipedia English [3] 30GB Phase changing map reduce

Latency-critical Memcached [5] Facebook’s USR like [11] 21M KV Pairs In-memory KV Store

Table 1. Applications used to evaluate Mage.

0

100

200

300

400

500

600

9080706050403020100

0

50

100

150

200

9080706050403020100

Mage
Lib

Mage
Lnx

DiLOS

Hermit

Ideal

J
o
b
s
/
h
o
u
r

% far memory

(a) GapBS

% far memory

(b) XSBench

Figure 9. Impact of far memory systems on applications’

throughput with varying local memory at 48 threads.

6.1 Experiment Setup

We evaluate our systems using two VMs deployed across two

RDMA-connected servers. The first VM executes application

threads and maintains a configurable quota of local DRAM;

memory exceeding this quota is transparently offloaded

to the second VM, which serves as a passive far-memory

pool. We vary the local memory quota to test different

memory pressure scenarios. Each server has dual-socket

Intel Xeon Gold 6348 CPUs (28 cores per socket, 56 cores

total) with 512 GB of memory, running Ubuntu 22.04

with Linux 5.14. We use QEMU/KVM for virtualization

and disable CPU frequency scaling, AutoNUMA migration,

hyper-threading, and transparent hugepages on the host

to eliminate performance interference. The servers are

connected via Mellanox BlueField-2 DPUs providing 200

Gbps bandwidth [46], configured in NIC mode without

utilizing the DPU’s ARM cores. We run Hermit on bare metal

due to virtualization compatibility issues.

We compare Mage
Lib

and Mage
Lnx

with Hermit and

DiLOS. We configure a maximum of four dedicated eviction

threads. This configuration allows all four systems to reach

their peak performance; additional eviction threads beyond

four do not improve throughput. In all graphs, “𝑋% far

memory” means the remote memory pool is provisioned

with 𝑋% of the application’s working set size (WSS), while

the local VM is configured to retain 100 − 𝑋% of the WSS.

6.2 Offloading Throughput-bound Applications

We evaluate offloading performance across three application

types, each running with 48 application threads.

Applications with random access patterns. We test a)

GapBS [12] (GAP Benchmark Suite) page rank with a 20GB

Kronecker[39] workload, using OpenMP parallelization.

b) XSBench [58], which simulates Monte Carlo neutron

transport through random walks on a 15GB dataset.

These applications generate intense memory pressure with

unpredictable access patterns.

Figure 9 shows that both Mage variants significantly

outperform Hermit and DiLOS, as these applications stress

the paging subsystems even at low offloading percentages.

With GapBS, offloading just 10% of local memory generates

a fault-in throughput of 1.82 M ops/s (1.82 million pages

per second, equivalent to 59.3 Gbps), which exceeds DiLOS

(1.77 M ops/s) and Hermit (0.80 M ops/s) capabilities. This

forces these systems to trigger synchronous eviction, which

causes significant stalls in the fault handler (up to 80𝜇s). This

leads to sharp throughput drops (51% and 74%), effectively

preventing memory offloading.

In contrast, Mage
Lib

and Mage
Lnx

achieve faster eviction

and fault-in paths, resulting in much smaller performance

reductions of 15% and 19%, respectively, at 10% offloading. If

operators can tolerate a 30% performance drop, Mage
Lib

enables offloading up to 61% of memory. Even at 90%

offloading, Mage
Lib

and Mage
Lnx

maintain 56% and 41% of

baseline performance, respectively, allowing significantly

more applications to be co-located on the same local memory

budget.

For XSBench, which performs more computation per page

access, both Mage variants achieve similar performance.

Both systems experience a 10% throughput drop when

offloading 9% of memory, and a 20% throughput reduction

when offloading approximately 20% of memory. This

represents a 3.6–3.8× improvement in offloadable memory

capacity compared to DiLOS and Hermit.

Applications with regular access patterns. We use the

dataframe library [45] as a representative application with

regular, prefetchable access patterns. Unfortunately, since

its implementation does not scale with multiple threads, our

evaluation uses a custom dataframe-style sequential scan that
performs checksums over a 20GB memory region equally

sharded among worker threads.

Mage
Lib
, DiLOS and Hermit use pattern matching for

prefetching: they record past fault-in virtual address to detect

sequential access patterns. Due to the lack of support of

10

0

2

4

6

8

9080706050403020100

0

2

4

6

8

9080706050403020100

Mage
Lib

DiLOS Hermit Ideal

J
o
b
s
/
h
o
u
r

% far memory

(a) No prefetch

% far memory

(b) With Prefetch

Figure 10. Impact of far memory systems on a regular,

prefetchable sequential access pattern.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

Mage
Lib

Mage
Lnx

DiLOS Hermit

T
h
r
o
u
g
h
p
u
t
(
M

o
p
s
/
s
)

Time (s)

Figure 11. Impact of far memory systems on the GUPS

benchmark, which exhibits a phase change at 10 seconds.

prefetching in Mage
Lnx

, we focus on Mage
Lib
. Figure 10

shows that without prefetching, Mage
Lib

performance drops

by 32% when offloading 10% of local memory, which

is only 68% of the ideal performance. With prefetching

enabled, Mage
Lib

dramatically reduces page faults from

1.2M to 324K, maintaining low fault latency (4.6𝜇s) without

triggering synchronous eviction. This results in near-ideal

throughput: Mage
Lib

achieves 93.6% of baseline performance

with only a 6.4% performance drop when offloading 10%

of memory. Prefetching is effective with Mage because

its fast eviction path can sustain the increased fault-in

pressure that prefetching creates. In contrast, prefetching

provides minimal benefit for DiLOS (throughput increases

only from 1.87 to 2.46 M ops/s) and actually degrades

Hermit’s performance (dropping from 1.34 to 1.03 M ops/s)

due to synchronous eviction overheads.

Applications with varying working sets. We test two

applications: a) GUPS [50], a modified HPC benchmark that

performs random updates following the Zipf distribution in

one region (uses 80% of the WSS) and then shifts accesses

to another region (using the remaining 20% of the WSS).

b) Metis [34]: a bulk data processing application with an

explicit phase change.

GUPS. Figure 11 shows the timeline of the GUPS benchmark

with 85% local memory. Initially, both DiLOS and Mage
Lib

exhibit lower performance than Hermit due to virtualization

overheads (e.g., slower memory accesses from additional EPT

translations), as both are unikernels running on a hypervisor.

Mage
Lnx

suffers from both virtualization penalties and Linux

RDMA stack overhead, resulting in poor performance during

0

200

400

600

800

1000

9080706050403020100

0

400

800

1200

1600

2000

9080706050403020100

Mage
Lib

Mage
Lnx

DiLOS Hermit

J
o
b
s
/
h
o
u
r

% far memory

(a) Map

% far memory

(b) Reduce

Figure 12. Impact of far memory systems on the Metis

benchmark that comprises a map phase (a) and a reduce

phase (b).

the initial phase. Following the phase change at 10 seconds,

DiLOS and Hermit have severe performance degradation,

nearly stalling for over 2 seconds. Our analysis shows that

after the phase change, both fault-in and eviction rates

spike to 3.17 M ops/s, exceeding the capacity of existing

systems. In contrast, both Mage variants avoid stalling and

quickly recover to 0.7 M ops/s, which is beyond what other

systems can sustain. Mage experiences only a temporary

throughput drop to 0.4 M ops/s for 1.4 seconds during the

phase transition, after which the fault-in rate returns to zero.

Metis. Similar to GUPS, Metis exhibits a phase change

after the map phase completion, where the reduce phase

accesses a different memory region. Figure 12 shows

throughput for both phases. BothMage variants significantly

outperform Hermit and DiLOS after the phase transition.

At 20% offloading, Mage variants achieve near-baseline

performance, as the map phase working set fits entirely

within local DRAM. After the phase change, Mage
Lib

throughput reduces by 14.3%, while Hermit and DiLOS drop

by 61.3% and 41.2%, respectively. Mage variants outperform

others in the reduce phase due to performant eviction paths

that efficiently drain the previous memory region.

Each system exhibits distinct limitations. Mage
Lib

performs slightly below Hermit initially because of its less

optimized object allocation mechanism. Mage
Lnx

suffers

during the map phase from eager memory initialization—

unlike other systems that initialize pages on-demand, it pre-

initializes far memory at mmap time, which creates overhead

during syscall-intensive phases such as map. Further analysis

reveals that Mage
Lnx

degradation stems from Linux network

stack interference between fault-in and eviction threads,

rather than its eviction pipeline being the bottleneck. Hermit

suffers from its poor handling of phase transitions, which

can be observed from its steep performance drop. Meanwhile,

DiLOS starts early memory reclamation through its per-

CPU threads that fill local page buffers, which causes higher

memory pressure. However, this early eviction behavior

benefits DiLOS as it preserves sufficient local memory at 90%

allocation by maintaining stable throughput during phase

changes.

11

160

180

200

220

240

260

280

300

9080706050403020100

160

180

200

220

240

260

280

300

0.10.20.30.40.50.60.70.80.9 1 1.1

Mage
Lib

Mage
Lnx

DiLOS Hermit

9
9
%
L
a
t
e
n
c
y
(
𝜇
s
)

% far memory

(a) Memcached (24T, 800 Kops)

Offered load (M ops/s)

(b) Memcached (24T, 50% far memory)

Figure 13. (a) Impact of far memory on p99 latency for

Memcached. The load is fixed as 50% of Memcached’s load

capacity with 100% local memory. (b) Impact of varying load

at fixed far memory ratio and thread count on tail latency

for Memcached.

6.3 Offloading Latency-sensitive Applications

We now evaluate offloading performance for Memcached [5],

a widely used in-memory key-value store. We follow

Facebook’s USR distribution to generate a workload to

Memcached with 99.8% GET and 0.2% SET operations [11].

We generate request keys following Zipfian distribution with

skewness of 0.99 alignedwith YCSB suite [18].We restrict our

experiments to use 24 threads to avoid the impact of cross-

NUMA communications for the latency-sensitive workload.

Figure 13 presents the results under two scenarios. In

the first case (a), we consider with varying local memory

ratios for a fixed load (800 Kops). Here, due to its lightweight

paging components, both Mage variants outperform DiLOS

and Hermit. For an SLO of 200𝜇s, Mage
Lib

offloads 21% more

memory compared to DiLOS and 36% more than Hermit. If

SLO is further relaxed to 220 𝜇s, the offloaded memory gap

increases to 40% more than Hermit, offloading nearly 60%

of the memory. Mage
Lnx

, on the other hand, permits even

more memory to be offloaded at lower latencies—nearly 70%

at 160𝜇s and 80% at 180𝜇s.

In the second scenario (b), we evaluate Memcached under

varying load with 50% local memory. At high loads, both

Mage variants achieve higher throughput than DiLOS and

Hermit due to their more efficient eviction path design.

Unlike DiLOS and Hermit, Mage completely eliminates

synchronous eviction. As a result, the observed latency

increases stem entirely from network congestion delays.

Thus, Mage sustains 0.64 M ops/s higher load capacity

than Hermit and 0.28 M ops/s higher than DiLOS while

maintaining a p99 latency SLO of 200𝜇s.

6.4 Mage Available Throughput Analysis

We evaluate the performance of the page fault handler to

understand howmuch software overheadMage removes.We

use a sequential read benchmark with prefetching disabled

for all systems. Each thread reads its own private memory

region. The local memory is set to 30% to ensure that each

access to a page triggers a page fault.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45 50

Mage
Lib

Mage
Lnx

DiLOS Hermit

9
9
%
L
a
t
e
n
c
y
(
𝜇
s
)

Threads

(a) Sequential Read (p99 latency)

T
h
r
o
u
g
h
p
u
t
(
G
b
p
s
)

Threads

(b) Sequential Read (Throughput)

Figure 14. The p99-latency of sequential read and the

number of synchronous eviction invoked over 5.2 million

page faults. Mage
Lib

is able to remove synchronous eviction

in all cases.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160 180 200

Mage
Lib

Mage
Lnx

DiLOS

Hermit

RDMA

9
9
%
L
a
t
e
n
c
y
(
𝜇
s
)

Throughput (Gbps)

System Throughput against P99 Latency

Figure 15. The throughput-latency graph for compared

systems and raw RDMA read operations. To ensure parity

with other systems, we use 4 background threads constantly

performing RDMA writes for the RDMA-only case.

As shown in Figure 14, Mage
Lib

nearly saturates the

network bandwidth by utilizing 94% (i.e., 181 Gbps) of

the 192 Gbps RDMA bandwidth limit. This is 3.1× and

7.1× faster than DiLOS and Hermit, respectively. Detailed

analysis reveals that with 48 faulting threads, Mage
Lib
’s

local page allocation never stalls. It maintains an average

latency of 7.7 𝜇s, with 5.1𝜇s spent on RDMA stack congestion.

The remaining cycles outside page faults are mostly

consumed by remote TLB flush operations initiated by

background eviction threads. Meanwhile, Mage
Lnx

achieves

lower network utilization at 139 Gbps due to scalability

limitations in its network stack implementation. In contrast,

both DiLOS and Mage
Lib

benefit from their microkernel-

based RDMA driver architecture, which significantly reduces

network stack contention. Mage’s careful design of paging

components also controls fault latencies; p99 latency

decreases drastically from 255 𝜇s and 82 𝜇s for Hermit

and DiLOS, respectively, to 12𝜇s and 31𝜇s for Mage
Lib

and

Mage
Lnx

, respectively.

Figure 15 compares the throughput-latency curves

across all systems against raw RDMA operations. Mage
Lib

maintains a relatively stable tail latency across different

loads for two key reasons: (1) its efficient eviction design

prevents memory allocation stalls in the fault path, and

(2) its fault path components (memory allocation and PTE

12

DiLOS 48T

Mage
Lib

48T

Mage
Lnx

48T

DiLOS 24T

Mage
Lib

24T

Mage
Lnx

24T

0 5 10 15 20 25 30

TLB shootdown

Memory circulation

LRU update

RDMA

Others

Time (𝜇s)

Figure 16. Average latency breakdown of DiLOS and Mage

variants for the sequential read benchmark.

0

100

200

300

400

500

600

9080706050403020100

0

50

100

150

200

9080706050403020100

+ MultiLayer

+ LRU ‡
+ pipelined

Baseline

J
o
b
s
/
h
o
u
r

% far memory

(a) GapBS

% far memory

(b) XSBench

Figure 17. The performance impact of all the techniques

when applied in the following order: Baseline → pipelined

→LRU ‡ (LRU partitioning)→ MultiLayer (multi-layer mem

allocator).

150

200

250

300

350

400

450

500

550

600

9080706050403020100

30

35

40

45

50

55

60

9080706050403020100

pipelined 256

pipelined 128

pipelined 64

Best w/o pipelined

J
o
b
s
/
h
o
u
r

% far memory

(a) Varying Batch Size

Mage
Lib

DiLOS

Hermit

J
o
b
s
/
h
o
u
r

% far memory

(b) 4 threads

Figure 18. (a) Comparison of different batch sizes for

pipelined eviction compared to the non-pipelined eviction

(sequential eviction). (b) Regression test for Mage
Lib

under

low-fault-in throughput condition.

updates) provide natural back pressure to the RDMA stack,

preventing congestion that causes the tail latency spikes

observed in the RDMA-only case. Mage
Lnx

also exhibits

more stable tail latency than DiLOS and Hermit because its

asynchronous decoupling eliminates blocking synchronous

eviction operations.

Figure 16 breaks down the latency contributions of

key components at 24 and 48 threads for DiLOS and

Mage. Mage
Lib

eliminates TLB latency from the fault path

and reduces page accounting latency from 2.1𝜇s to 0.2𝜇s

through partitioning (§4.2.2), andmemory circulation latency

from 2.4𝜇s to 0.5𝜇s through its staging allocator. These

optimizations achieve sub-10 𝜇s average latency for Mage
Lib

.

6.5 Breaking down Mage Performance

We now evaluate how each of Mage’s techniques

performs in isolation and whether our throughput-oriented

optimizations trigger a regression for cases with low

throughput demand. We conduct the analysis using Mage
Lib

as it addresses most other scalability bottlenecks in the

memory management subsystem.

Technique breakdown. We evaluate GapBS and XSBench

with varying percentages of local memory to demonstrate

how different techniques contribute to the performance

Figure 17 presents the results using DiLOS as the baseline.

First, pipelined eviction enables cross-batch pipelining

(§4.1) . This results in 4.3% and 15%more offloadable memory

for GapBS and XSBench, respectively, when the SLO allows

20% throughput drop (i.e., a 20% throughput drop for the

workloadwill not violate operator’s SLOs), and delivers 1.58×
and 1.74× throughput improvement while offloading 20%

local memory.

Then, for GapBS, our partitioned LRU approach (§4.2.2)

removes 81.2% of the cycles spent on scanning pages in

eviction. This reduces wait time for free pages in the fault

handler when the local memory is less than 80%, giving an

additional 5.1% of offloadable memory when the SLO permits

20% performance drop. Our multi-layer allocator (§4.2.3)

reduces the average time spent on the shared allocator per

page by 93.1% from 2.4𝜇s to 0.5𝜇s. This allows a further 8%

more memory to be offloaded with the same SLO criteria.

These two techniques mainly reduces the contention on the

shared data structures. For XSBench, the contention is not as

severe as GapBS, since the per-page computation is higher, so

two techniques combined lead to ∼ 10% higher throughput.

pipelined vs. non-pipelined. To evaluate how batch

size affects throughput, we compare pipelined decoupled

eviction design against the best-performing non-pipelined

method on GapBS. Figure 18 (a) presents the results. Our

pipelined design with asynchronous eviction performs best

with batch sizes of 128 and 256. At these sizes, the RDMA

wait latency completely hides the TLB shootdown latency.

While still effective at a batch size of 64, TLB latency begins

to impact performance as it becomes visible. We further

verify that increasing the batch size beyond 256 provides no

further benefit. In contrast, the non-pipelined approach is

more limited. We use a batch size of 64. Larger batches fail

to improve its throughput because asynchronous eviction

threads spend 40% of their time on TLB flushes, capping

RDMA bandwidth utilization at just 60%. Smaller batches are

also inefficient, as they trigger synchronous eviction, which

incurs the substantial TLB latency overhead detailed in §3.3.

In fact, even when both methods use the batch size of 64, our

pipelined design achieves higher offloading throughput.

Regression test with a low thread count We run a

regression test for GapBS using four threads to understand

13

Category Mage
Lib

Mage
Lnx

DiLOS Hermit

GapBS (Jobs/h)

536.91

(-7%)
528.6

(-8%)
534.23

(-7.6%) 578.46

XSBench (Jobs/h)

179.06

(-5%)
181.02

(-4%)
182.5

(-3%) 188.78

Prefetching

Sequential Scan

(M ops/s)

8.43

(-3%) -

8.46

(-2%) 8.61

Gups (M ops/s)

0.75

(-4%)
0.76

(-3%)
0.76

(-3%) 0.78

Metis (Jobs/h)

609.5

(-2%)
496.9

(-20%)
587.7

(-5%) 620.6

Table 2. The performance of throughput bound applications

when running on 100% local memory (i.e., no offloading). The

relative % degradation is with respect to the best performing

system, which is Hermit.

how different systems perform when the demand for fault-

in throughput is low. Figure 18 (b) presents the results.

With four threads, the maximum fault-in throughput is 0.81

M ops/s (26 Gbps), which falls well below the maximum

available throughput that all tested systems can sustain. In

this low-demand configuration, Mage and DiLOS perform

similarly and are slightly better than Hermit in most cases.

This improvement stems fromDiLOS removing several Linux

memory management components, which makes its fault

handler faster than Hermit’s (4.7 𝜇s versus 5.8𝜇s) when

no synchronous eviction occurs. However, with 100% local

memory, Mage and DiLOS are slower than Hermit due to

virtualization overheads.

All-local memory performance. We execute batch-

processing applications with 100% local memory (Table 2)

to evaluate the virtualization costs. Mage
Lib

incurs an 8.6%

performance regression on GapBS compared to Hermit. This

overhead stems from two sources: (1)Mage
Lib

andDiLOS use

OSv’s less mature userspace libraries (e.g., object allocators),
and (2) both Mage

Lib
and Mage

Lnx
run in VMs while Hermit

runs on bare metal. As a result, Mage
Lib

and Mage
Lnx

incur virtualization overheads, such as EPT translations

and VMexits. We consider addressing these virtualization

overheads outside the scope of this paper.

7 Related work

Far-memory systems. Page-based far memory systems

reuse the existing swap subsystems in OSes [8, 27, 44,

51, 61, 62, 65]. Infiniswap [27] and Fastswap [8] optimize

swap backend for latency. Hermit [51] introduces feedback-

directed asynchrony, with multiple asynchronous eviction

threads. DiLOS [65] adopts application-guided prefetching to

reduce application faults. Object-based far memory mitigates

I/O amplification of paging [20, 52, 67]. AIFM [52] proposes

remotable pointers abstraction for far memory. However,

their downside is requiring application rewrite. Hybrid-page-
object approach [29, 56] finds a middle point by exploiting

compilers.

Hardware-managed far-memory technologies propose

accessing far-memory through a load/store interface,

managing data movement by hardware [24, 26, 53, 55, 57],

such as today’s CXL protocol [17]. Such an approach has

several tradeoffs compared to paging. First is the cost of

flexibility. While CXL’s load/store interface excels at rack-

scale scaling, it isn’t fully routable across multiple chassis,

whereas paging naturally pools over RDMA networks and

can offload memory to heterogenous backends. Additionally,

CXL expanders still face stability, scalability, and deployment

hurdles [40], while some vendors have already deployed

RDMA NICs at fleet-scale [23]. Meanwhile, page-based

offloading is battle-tested by hyperscalers like Google and

Meta at fleet scale [63]. We believe page-based remote

memory systems and CXL are likely to coexist in the fleet,

targeting different memory scaling scenarios (scale out and

scale up respectively), and limit this work’s scope only to

software-level approaches.

Scalable virtual memory. Virtual memory has been

studied in different contexts and requires careful design

of multiple components. Efficient page promotion and

demotion requires wise page accounting [32, 47, 60, 64].

LRU is a well known technique with different variations [33,

47, 48, 54] while Linux uses Multi-Gen LRU [2] for page

evictions. Different solutions have been proposed to solve

TLB shootdowns which is a major bottleneck as discussed

in §3 [10, 16, 30, 36, 43]. Latr [36] and EcoTLB [43] lazily

handle TLB shootdowns while relying on scheduler ticks.

8 Conclusion

Page-based far memory systems support data-intensive

applications but struggle with scalability from imbalanced

fault-in and eviction path. We present Mage, the first

system to offer both transparent far memory and multi-

core scalability. With asynchronous decoupling, pipelined

execution, and scalable data structures, Mage boosts

throughput by up to 4.2x and cuts tail latency by 94.5%.

Its OS-level optimizations apply to any fast swap backend,

including RDMA memory, SSDs, and ZSwap.

9 Acknowledgments

We thank our shepherd Steven Hand, as well as our

anonymous reviewers for their feedback. We also thank

Vishal Gupta, Tao Lyu, and Jiacheng Ma for their feedback

on drafts of the paper at various stages. Finally, we thank

SeongJae Park, Dan Schatzberg, Johannes Weiner, and other

Linux Kernel maintainers for their feedback. This work was

supported in part by the NSF awards #2047220, #2112562,

#2147946, #2444660, a NetApp Faculty Fellowship, and gifts

from Meta and Intel.

14

References

[1] Intel® Virtualization Technology for Directed I/O architecture

Specification. URL https://www.intel.com/content/www/us/en/
content-details/774206/intel-virtualization-technology-for-directed-
i-o-architecture-specification.html. Accessed: 2024-04-19.

[2] Multi-Gen LRU - The Linux Kernel Documentation. URL https://docs.
kernel.org/admin-guide/mm/multigen_lru.html. Accessed: 2024-04-
18.

[3] Wikipedia Networks Data, 2023. https://www.tensorflow.org/datasets/
catalog/wikipedia.

[4] Linux Kernel Archives, 2025. URL https://www.kernel.org/pub/.
Accessed: 2025-04-13.

[5] Memcached - A Distributed Memory Object Caching System, 2025.

URL https://memcached.org/. Accessed: 2025-04-19.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow: a System for Large-

Scale Machine Learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[7] M. K. Aguilera, E. Amaro, N. Amit, E. Hunhoff, A. Yelam, and

G. Zellweger. Memory Disaggregation: Why Now and What are

the Challenges. SIGOPS Oper. Syst. Rev., 57(1):38–46, June 2023. ISSN
0163-5980. doi: 10.1145/3606557.3606563. URL https://doi.org/10.1145/
3606557.3606563.

[8] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,

A. Panda, S. Ratnasamy, and S. Shenker. Can Far Memory Improve Job

Throughput? In Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA, 2020.

[9] N. Amit. Optimizing the TLB Shootdown Algorithm with Page Access

Tracking. In 2017 USENIX Annual Technical Conference (USENIX ATC
17), pages 27–39, 2017.

[10] N. Amit, A. Tai, and M. Wei. Don’t Shoot Down TLB Shootdowns! In

Proceedings of the Fifteenth European Conference on Computer Systems,
EuroSys ’20, 2020.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, andM. Paleczny. Workload

Analysis of a Large-Scale Key-Value Store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, pages 53–64, 2012.

[12] S. Beamer, K. Asanović, and D. Patterson. The GAP Benchmark Suite,

2017. URL https://arxiv.org/abs/1508.03619.

[13] J. Bonwick. The Slab Allocator: An Object-Caching Kernel.

In USENIX Summer 1994 Technical Conference (USENIX Summer
1994 Technical Conference), Boston, MA, June 1994. USENIX

Association. URL https://www.usenix.org/conference/usenix-summer-
1994-technical-conference/slab-allocator-object-caching-kernel.

[14] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:

An operating system for many cores. In 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 08), San Diego,

CA, Dec. 2008. USENIX Association. URL https://www.usenix.org/
conference/osdi-08/corey-operating-system-many-cores.

[15] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and

A. Kolli. Rethinking Software Runtimes for Disaggregated Memory. In

Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Virtual, Apr. 2021.

[16] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM: Scalable

Address Spaces for Multithreaded Applications. In Proceedings of the
8th ACM European Conference on Computer Systems, EuroSys ’13, page
211–224, 2013.

[17] T. C. Consortium. Compute Express Link Specification. https:
//www.computeexpresslink.org/. Accessed: 2025-04-13.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing, pages 143–154, 2010.

[19] L. Dhulipala, G. E. Blelloch, and J. Shun. Low-Latency Graph Streaming

using Compressed Purely-Functional Trees. In Proceedings of the
40th ACM SIGPLAN conference on programming language design and
implementation, pages 918–934, 2019.

[20] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast

Remote Memory. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, NSDI’14, page 401–414,
USA, 2014. ISBN 9781931971096.

[21] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptible tasks:

treatingmemory pressure as interrupts for highly scalable data-parallel

programs. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, page 394–409, 2015.

[22] A. Fuerst, S. Novaković, I. n. Goiri, G. I. Chaudhry, P. Sharma, K. Arya,

K. Broas, E. Bak, M. Iyigun, and R. Bianchini. Memory-Harvesting

VMs in Cloud Platforms. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, page 583–594, New York, NY, USA,

2022.

[23] A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy, R. Puri,

M. Riftadi, A. J. Shetty, J. Yang, et al. RDMA Over Ethernet for

Distributed Training at Meta Scale. In Proceedings of the ACM
SIGCOMM 2024 Conference, pages 57–70, 2024.

[24] D. Gibson, H. Hariharan, E. Lance, M. McLaren, B. Montazeri, A. Singh,

S. Wang, H. M. Wassel, Z. Wu, S. Yoo, et al. Aquila: A Unified, Low-

Latency Fabric for Datacenter Networks. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), pages
1249–1266, 2022.

[25] N. Gorman. Swap Management. URL https://www.kernel.org/doc/
gorman/html/understand/understand014.html. Accessed: 2024-04-19.

[26] D. Gouk, S. Lee, M. Kwon, and M. Jung. Direct Access, High-

Performance Memory Disaggregation with DirectCXL. In 2022
USENIX Annual Technical Conference (USENIX ATC 22), pages 287–294,
Carlsbad, CA, July 2022. USENIX Association. ISBN 978-1-939133-29-

65. URL https://www.usenix.org/conference/atc22/presentation/gouk.

[27] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient

Memory Disaggregation with Infiniswap. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pages
649–667, Boston, MA, Mar. 2017. USENIX Association. ISBN

978-1-931971-37-9. URL https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/gu.

[28] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao.

Who Limits the Resource Efficiency of My Datacenter: An Analysis

of Alibaba Datacenter Traces. In 2019 IEEE/ACM 27th International
Symposium on Quality of Service (IWQoS), pages 1–10, 2019. doi:

10.1145/3326285.3329074.

[29] Z. Guo, Z. He, and Y. Zhang. Mira: A Program-Behavior-Guided Far

Memory System. In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 692–708, New York, NY, USA, 2023.

Association for Computing Machinery. ISBN 9798400702297. doi: 10.

1145/3600006.3613157. URL https://doi.org/10.1145/3600006.3613157.

[30] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Falsafi, and

M. Payer. Rebooting Virtual Memory with Midgard. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
pages 512–525. IEEE, 2021.

15

https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://www.tensorflow.org/datasets/catalog/wikipedia
https://www.tensorflow.org/datasets/catalog/wikipedia
https://www.kernel.org/pub/
https://memcached.org/
https://doi.org/10.1145/3606557.3606563
https://doi.org/10.1145/3606557.3606563
https://arxiv.org/abs/1508.03619
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/osdi-08/corey-operating-system-many-cores
https://www.usenix.org/conference/osdi-08/corey-operating-system-many-cores
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.kernel.org/doc/gorman/html/understand/understand014.html
https://www.kernel.org/doc/gorman/html/understand/understand014.html
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://doi.org/10.1145/3600006.3613157

[31] Intel. Multiprocessor Specification, 1997. URL http://www.intel.com/
design/archives/processors/pro/docs/242016.htm.

[32] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: An Effective Improvement

of the CLOCK Replacement. In USENIX Annual Technical Conference,
General Track, pages 323–336, 2005.

[33] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha. LRU-WSR: Integration

of LRU and Writes Sequence Reordering for Flash Memory. IEEE
Transactions on Consumer Electronics, 54(3):1215–1223, 2008.

[34] F. Kaashoek, R. Morris, and Y. Mao. Optimizing MapReduce for

Multicore Architectures. MIT CSAIL Technical Reports, 2010(020), 2010.
URL http://hdl.handle.net/1721.1/54692.

[35] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and

V. Zolotarov. OSv—Optimizing the operating system for virtual

machines. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 61–72, Philadelphia, PA, June 2014. USENIX Association.

ISBN 978-1-931971-10-2. URL https://www.usenix.org/conference/
atc14/technical-sessions/presentation/kivity.

[36] M. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim,

A. Bhattacharjee, and T. Krishna. LATR: Lazy Translation Coherence.

In Proceedings of the 23rd ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Williamsburg, VA, Mar. 2018.

[37] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,

H. Zhang, and I. Stoica. Efficient Memory Management for Large

Language Model Serving with PagedAttention. In Proceedings of the
29th Symposium on Operating Systems Principles, pages 611–626, 2023.

[38] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt,

J. Chang, A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurtsever,

Y. Zhao, and P. Ranganathan. Software-Defined Far Memory in

Warehouse-Scale Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 317–330, 2019.

[39] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and

Z. Ghahramani. Kronecker graphs: an approach to modeling networks.

Journal of Machine Learning Research, 11(2), 2010.

[40] P. Levis, K. Lin, and A. Tai. A Case Against CXL Memory Pooling.

In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks,
pages 18–24, 2023.

[41] Linux Kernel. Process Addresses, 2024. https://docs.kernel.org/mm/
process_addrs.html.

[42] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai. Imbalance in the Cloud:

An Analysis on Alibaba Cluster Trace. In 2017 IEEE International
Conference on Big Data (Big Data), pages 2884–2892. IEEE, 2017.

[43] S. Maass, M. K. Kumar, T. Kim, T. Krishna, and A. Bhattacharjee.

EcoTLB: Eventually Consistent TLBs. ACM Transactions on
Architecture and Code Optimization (TACO), 17(4):1–24, 2020.

[44] H. A. Maruf and M. Chowdhury. Effectively Prefetching Remote

Memory with Leap. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 843–857. USENIX Association, July 2020. ISBN

978-1-939133-14-4. URL https://www.usenix.org/conference/atc20/
presentation/al-maruf.

[45] H. Moein. Dataframe. https://github.com/hosseinmoein/DataFrame.

[46] NVIDIA. NVIDIA Bluefield-2 DPU Datasheet. https:
//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
documents/datasheet-nvidia-bluefield-2-dpu.pdf.

[47] E. J. O’neil, P. E. O’neil, and G. Weikum. The LRU-K Page Replacement

Algorithm for Database Disk Buffering. ACM Sigmod Record, 22(2):
297–306, 1993.

[48] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee. CFLRU: a

Replacement Algorithm for Flash Memory. In Proceedings of the 2006
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, pages 234–241, 2006.

[49] R. J. Pfitscher, M. A. Pillon, and R. R. Obelheiro. Customer-Oriented

Diagnosis of Memory Provisioning for IaaS Clouds. SIGOPS Oper. Syst.
Rev., 48(1):2–10, 2014.

[50] S. J. Plimpton, R. Brightwell, C. Vaughan, K. Underwood, and M. Davis.

A Simple Synchronous Distributed-Memory Algorithm for the HPCC

RandomAccess Benchmark. In 2006 IEEE International Conference on
Cluster Computing, pages 1–7. IEEE, 2006.

[51] Y. Qiao, C. Wang, Z. Ruan, A. Belay, Q. Lu, Y. Zhang, M. Kim, and

G. H. Xu. Hermit: Low-Latency, High-Throughput, and transparent

remote memory via Feedback-Directed asynchrony. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 181–198, Boston, MA, Apr. 2023. USENIX Association. ISBN

978-1-939133-33-5. URL https://www.usenix.org/conference/nsdi23/
presentation/qiao.

[52] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay. AIFM: High-

Performance, Application-Integrated Far Memory. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 315–332, 2020.

[53] V. Shrivastav, A. Valadarsky, H. Ballani, P. Costa, K. S. Lee, H. Wang,

R. Agarwal, and H. Weatherspoon. Shoal: A Network Architecture

for Disaggregated Racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 255–270, Boston,
MA, Feb. 2019. USENIX Association. ISBN 978-1-931971-49-2. URL

https://www.usenix.org/conference/nsdi19/presentation/shrivastav.

[54] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: Simple and

Effective Adaptive Page Replacement. ACM SIGMETRICS Performance
Evaluation Review, 27(1):122–133, 1999.

[55] K. Taranov, S. Di Girolamo, and T. Hoefler. CoRM: Compactable

Remote Memory over RDMA. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21, page 1811–1824,

2021.

[56] B. R. Tauro, B. Suchy, S. Campanoni, P. Dinda, and K. C. Hale. TrackFM:

Far-out Compiler Support for a Far Memory World. In Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1, ASPLOS
’24, page 401–419, 2024.

[57] S. Thomas, G. M. Voelker, and G. Porter. CacheCloud: Towards

Speed-of-Light Datacenter Communication. In 10th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 18), Boston, MA, July

2018. USENIX Association. URL https://www.usenix.org/conference/
hotcloud18/presentation/thomas.

[58] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz. XSBench -

The Development and Verification of a Performance Abstraction

for Monte Carlo Reactor Analysis. In PHYSOR 2014 - The Role
of Reactor Physics toward a Sustainable Future, Kyoto, 2014. URL

https://www.mcs.anl.gov/papers/P5064-0114.pdf.

[59] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes. Large-Scale Cluster Management at Google with Borg. In

Proceedings of the Tenth European Conference on Computer Systems,
pages 1–17, 2015.

[60] D. Vöhringer and V. Leis. Write-Aware Timestamp Tracking: Effective

and Efficient Page Replacement for Modern Hardware. Proc. VLDB
Endow., 16(11):3323–3334, jul 2023. ISSN 2150-8097. doi: 10.14778/

3611479.3611529. URL https://doi.org/10.14778/3611479.3611529.

[61] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D. Bond,

R. Netravali, M. Kim, and G. H. Xu. Semeru: A Memory-Disaggregated

16

http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://hdl.handle.net/1721.1/54692
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://docs.kernel.org/mm/process_addrs.html
https://docs.kernel.org/mm/process_addrs.html
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://github.com/hosseinmoein/DataFrame
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.usenix.org/conference/nsdi23/presentation/qiao
https://www.usenix.org/conference/nsdi23/presentation/qiao
https://www.usenix.org/conference/nsdi19/presentation/shrivastav
https://www.usenix.org/conference/hotcloud18/presentation/thomas
https://www.usenix.org/conference/hotcloud18/presentation/thomas
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.14778/3611479.3611529

Managed Runtime. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 261–280, 2020.

[62] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson, C. Navasca, S. Lu, and

G. H. Xu. MemLiner: Lining up Tracing and Application for a Far-

Memory-Friendly Runtime. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 35–53, 2022.

[63] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang, B. Sanouillet,

B. Sharma, T. Heo, M. Jain, C. Tang, and D. Skarlatos. TMO:

Transparent Memory Offloading in Datacenters. In Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’22, page

609–621, 2022.

[64] J. Yang, Y. Zhang, Z. Qiu, Y. Yue, and R. Vinayak. FIFO Queues are All

You Need for Cache Eviction. In Proceedings of the 29th Symposium on

Operating Systems Principles, SOSP ’23, page 130–149, 2023.

[65] W. Yoon, J. Ok, J. Oh, S. Moon, and Y. Kwon. DiLOS: Do Not

Trade Compatibility for Performance in Memory Disaggregation. In

Proceedings of the Eighteenth European Conference on Computer Systems,
EuroSys ’23, page 266–282, New York, NY, USA, 2023. Association for

Computing Machinery. ISBN 9781450394871. doi: 10.1145/3552326.

3567488. URL https://doi.org/10.1145/3552326.3567488.

[66] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.

Spark: Cluster ComputingwithWorking Sets. In 2nd USENIXWorkshop
on Hot Topics in Cloud Computing (HotCloud 10), 2010.

[67] Y. Zhou, H. M. Wassel, S. Liu, J. Gao, J. Mickens, M. Yu, C. Kennelly,

P. Turner, D. E. Culler, H. M. Levy, et al. Carbink: Fault-Tolerant Far

Memory. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 55–71, 2022.

17

https://doi.org/10.1145/3552326.3567488

	Abstract
	1 Introduction
	2 Evolution of Page-Based Far Memory
	2.1 Remote Page Life Cycle
	2.2 Focus of Today's Far Memory Systems

	3 It's Not Paging's Fault: Understanding Remote Paging Bottlenecks at Scale
	3.1 Scaling Barriers to Memory Offloading
	3.2 Remote Paging Bottlenecks at Scale
	3.3 Challenges of Scaling Remote Paging
	3.4 Summary

	4 Design: Balancing FP and EP
	4.1 Always-Asynchronous Decoupling and Cross-Batch Pipelined Eviction
	4.2 CPU-efficient Remote Paging Paths

	5 Implementation
	5.1 MageLnx: A Linux-based Version of Mage
	5.2 MageLib: An LibOS Version of Mage

	6 Evaluation
	6.1 Experiment Setup
	6.2 Offloading Throughput-bound Applications
	6.3 Offloading Latency-sensitive Applications
	6.4 Mage Available Throughput Analysis
	6.5 Breaking down Mage Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

